Вконтакте Facebook Twitter Лента RSS

Принцип работы, характеристика и разновидности выпрямительных диодов. Полупроводниковые диоды Особенности вольт амперной характеристики диода

Что такое идеальный диод?

Основная задача обычного выпрямительного диода – проводить электрический ток в одном направлении, и не пропускать его в обратном . Следовательно, идеальный диод должен быть очень хорошим проводником с нулевым сопротивлением при прямом подключении напряжения (плюс — к аноду, минус — к катоду), и абсолютным изолятором с бесконечным сопротивлением при обратном.

Вот так это выглядит на графике:

Такая модель диода используется в случаях, когда важна только логическая функция прибора. Например, в цифровой электронике.

ВАХ реального полупроводникового диода

Однако на практике, в силу своей полупроводниковой структуры, настоящий диод обладает рядом недостатков и ограничений по сравнению с идеальным диодом. Это можно увидеть на графике, приведенном ниже.


V ϒ (гамма) — напряжение порога проводимости

При прямом включении напряжение на диоде должно достигнуть определенного порогового значения — V ϒ . Это напряжение, при котором PN-переход в полупроводнике открывается достаточно, чтобы диод начал хорошо проводить ток. До того как напряжение между анодом и катодом достигнет этого значения, диод является очень плохим проводником. V ϒ у кремниевых приборов примерно 0.7V, у германиевых – около 0.3V.

I D_MAX — максимальный ток через диод при прямом включении

При прямом включении полупроводниковый диод способен выдержать ограниченную силу тока I D_MAX . Когда ток через прибор превышает этот предел, диод перегревается. В результате разрушается кристаллическая структура полупроводника, и прибор становится непригодным. Величина данной силы тока сильно колеблется в зависимости от разных типов диодов и их производителей.

I OP – обратный ток утечки

При обратном включении диод не является абсолютным изолятором и имеет конечное сопротивление, хоть и очень высокое. Это служит причиной образования тока утечки или обратного тока I OP . Ток утечки у германиевых приборов достигает до 200 µА, у кремниевых до нескольких десятков nА. Самые последние высококачественные кремниевые диоды с предельно низким обратным током имеют этот показатель около 0.5 nA.

PIV(Peak Inverse Voltage) — Напряжение пробоя

При обратном включении диод способен выдерживать ограниченное напряжение – напряжение пробоя PIV . Если внешняя разность потенциалов превышает это значение, диод резко понижает свое сопротивление и превращается в проводник. Такой эффект нежелательный, так как диод должен быть хорошим проводником только при прямом включении. Величина напряжения пробоя колеблется в зависимости от разных типов диодов и их производителей.

В большинстве случаев, для расчетов в электронных схемах, не используют точную модель диода со всеми его характеристиками. Нелинейность этой функции слишком усложняет задачу. Предпочитают использовать, так называемые, приближенные модели.

Приближенная модель диода «идеальный диод + V ϒ »

Самой простой и часто используемой является приближенная модель первого уровня. Она состоит из идеального диода и, добавленного к нему, напряжения порога проводимости V ϒ .


Приближенная модель диода «идеальный диод + V ϒ + r D »

Иногда используют чуть более сложную и точную приближенную модель второго уровня. В этом случае добавляют к модели первого уровня внутреннее сопротивление диода, преобразовав его функцию из экспоненты в линейную.


Существует немало устройств, созданных с целью преобразования электрического тока, и выпрямительные диоды – одни из них.

Выпрямительный диод – преобразователь тока переменного в постоянный. Является одним из видов полупроводников. Широкое применение получил благодаря основной характеристике – переводу электрического тока строго в одном направлении.

Принцип действия

Необходимый эффект при работе устройства создают особенности p-n перехода. Заключаются в том, что рядом с переходом двух полупроводников встраивается слой, который характеризуется двумя моментами: большим сопротивлением и отсутствием носителей заряда. Далее при воздействии на данный запирающий слой переменного напряжения извне толщина его уменьшается и впоследствии исчезает. Возрастающий во время этого ток и является прямым током, который проходит от анода к катоду. В случае перемены полярности внешнего переменного напряжения запирающий слой будет больше, и сопротивление неминуемо возрастет.

ВАХ выпрямительного диода (вольт-амперная характеристика) также дает представление о специфике работы выпрямителя и является нелинейной. Выглядит следующим образом: существует две ветви – прямая и обратная. Первая отражает наибольшую проводимость полупроводника при возникновении прямой разницы потенциалов. Вторая указывает на значение низкой проводимости при обратной разнице потенциалов.

Вольт-амперные характеристики выпрямителя прямо пропорциональны температуре, с повышением которой разность потенциалов сокращается. Электрический ток не пройдет через устройство в случае низкой проводимости, но лавинный пробой происходит в случае возросшего до определенного уровня обратного напряжения.

Использование сборки

При эксплуатации выпрямительного полупроводникового диода польза извлекается только из половины волн переменного тока, соответственно, безвозвратно теряется более половины входного напряжения.

С целью улучшить качество преобразования переменного тока в постоянный используется сборка из четырех устройств – диодный мост. Выгодно отличается тем, что пропускает ток на протяжении каждого полупериода. Диодные мосты производят в виде комплекта, заключенного в пластиковый корпус.


Принципиальная схема диодного моста

Физико-технические параметры

Основные параметры выпрямительных диодов базируются на таких значениях:

  • максимально допустимом значении разницы потенциалов при выпрямлении тока, при котором устройство не выйдет из строя;
  • наибольшем среднем выпрямленном токе;
  • наибольшем значении обратного напряжения.

Выпрямители промышленность выпускает с разными физическими характеристиками. Соответственно, устройства имеют разную форму и способ монтажа. Разделяются при этом на три группы:

  1. Выпрямительные диоды большой мощности. Характеризуются пропускной способностью тока до 400 А и являются высоковольтными. Высоковольтные выпрямительные диоды производятся в корпусах двух видов –штыревом, где корпус герметичный и стеклянный, и таблеточном, где корпус из керамики.
  2. Выпрямительные диоды средней мощности. Обладают пропускной способность от 300 мА до 10А.
  3. Выпрямительные диоды малой мощности. Максимально допустимое значение тока – до 300 мА.

Выбор выпрямительных диодов

При приобретении устройства необходимо руководствоваться такими параметрами:

  • значениями вольт-амперной характеристики максимально обратного и пикового тока;
  • максимально допустимым обратным и прямым напряжением;
  • средней силой выпрямленного тока;
  • материалом прибора и типом монтажа.

В зависимости от физических характеристик на корпус устройства наносится соответствующее обозначение. Каталог с маркировкой выпрямительных диодов представлен в специализированном справочнике. Необходимо знать, что маркировка импортных аналогов отличается от отечественных.

Также стоит обратить внимание на то, что выпрямительные схемы отличаются по количеству фаз:

  1. Однофазные. Широко применяются для бытовых электроприборов. Существуют диоды автомобильные и для электродуговой сварки.
  2. Многофазные. Незаменимы для промышленного оборудования, общественного и специального транспорта.

Диод Шоттки

Отдельную позицию занимает диод Шоттки. Изобрели его в связи с растущими потребностями в развивающейся отрасли радиоэлектроники. Основное отличие его от остальных диодов заключается в том, что в его конструкцию заложен металл-полупроводник как альтернатива p-n переходу. Соответственно, диод Шоттки обладает своими, уникальными свойствами, которыми не могут похвастаться кремниевые выпрямительные диоды. Некоторые из них:

  • оперативная возобновляемость заряда благодаря его низкому значению;
  • минимальное падение напряжения на переходе при прямом включении;
  • ток утечки обладает большим значением.

При изготовлении диода Шоттки применяют такие материалы, как кремний и арсенид галлия, но иногда применяется и германий. Свойства материалов немного отличаются, но в любом случае, максимально допустимое обратное напряжение для выпрямителя Шоттки составляет не более 1200 V.

В противовес всем достоинствам конструкция данного вида имеет и минусы. Например, в сборке моста устройство категорически не воспринимает превышение обратного тока. Нарушение условия приводит к поломке выпрямителя. Также малое падение напряжения происходит при невысоком напряжении около 60-70 V. Если значение превышает этот показатель, то устройство превращается в обыкновенный выпрямитель.

Стоит отметить, что достоинства диода мощного выпрямительного Шоттки значительно превышают недостатки.

Диод-стабилитрон

Для стабилизации напряжения используют специальное приспособление, способное работать в режиме пробоя, – стабилитрон, зарубежное название которого «диод Зенера». Выполняет свою функцию устройство, работая в режиме пробоя при напряжении обратного смещения. Возрастание силы тока происходит в момент пробоя, одновременно опускается до минимума дифференциальное значение, вследствие чего напряжение стабильное и охватывает достаточно серьезный диапазон обратных токов.

Практическое использование выпрямительного диода

В связи с неудержимым развитием научно-технического прогресса применение выпрямителей затронуло все сферы жизнедеятельности человека. Диоды силовые выпрямительные эксплуатируются в таких узлах и механизмах:

  • в блоках питания главных двигателей транспортных средств (наземных, воздушных и водных), промышленных станков и техники, буровых установок;
  • в комплектации диодного моста для сварочных аппаратов;
  • в выпрямительных установках для гальванических ванн, используемых для получения цветных металлов или нанесения защитного покрытия на деталь или изделие;
  • в выпрямительных установках для очистки воды и воздуха, фильтрах различного рода;
  • для передачи электроэнергии на дальние расстояния посредством высоковольтной линии электропередач.

В повседневной жизни выпрямители используют в различных транзисторных схемах. Применяют в основном маломощные устройства как в виде однополупериодного выпрямителя, так и виде диодного моста. Например, диоды выпрямительного блока генератора хорошо известны автолюбителям.

Выпрямительные диоды применяются в цепях управления, коммутации, в ограничительных и развязывающих цепях, в источниках питания для преобразования (выпрямления) переменного напряжения в постоянное, в схемах умножения напряжения и преобразователях постоянного напряжения, где не предъявляются высокие требования к частотным и временным параметрам сигналов. В зависимости от значения максимального выпрямляемого тока различают выпрямительные диоды малой мощности (\(I_{пр max} \le {0,3 А}\)), средней мощности (\({0,3 А} < I_{пр max} \le {10 А}\)) и большой мощности (\(I_{пр max} > {10 А}\)). Диоды малой мощности могут рассеивать выделяемую на них теплоту своим корпусом, диоды средней и большой мощности должны располагаться на специальных теплоотводящих радиаторах, что предусматривается в т.ч. и соответствующей конструкцией их корпусов.

Обычно, допустимая плотность тока, проходящего через \(p\)-\(n\)-переход, не превышает 2 А/мм2, поэтому для получения указанных выше значений среднего выпрямленного тока в выпрямительных диодах используют плоскостные \(p\)-\(n\)-переходы. Такие переходы имеют существенную емкость, что ограничивает максимальную допустимую рабочую частоту (\(f_р\)) выпрямительных диодов.

Выпрямительные свойства диодов тем лучше, чем меньше обратный ток при заданном обратном напряжении и чем меньше падение напряжения при заданном прямом токе. Значения прямого и обратного токов отличаются на несколько порядков, а прямое падение напряжения не превышает единиц вольт по сравнению с обратным напряжением, которое может составлять сотни и более вольт. Поэтому диоды обладают односторонней проводимостью, что позволяет использовать их в качестве выпрямительных элементов. Вольт-амперные характеристики (ВАХ) германиевых и кремниевых диодов различаются. На рис. 2.3‑1 для сравнения показаны типичные ВАХ для германиевых и кремниевых выпрямительных диодов при различных температурах окружающей среды.

Рис. 2.3-1. Вольт-амперные характеристики выпрямительных диодов при различных температурах окружающей среды

По приведенным ВАХ видно, что обратный ток кремниевых диодов значительно меньше обратного тока германиевых диодов. Кроме того, обратная ветвь вольт-амперной характеристики кремниевых диодов не имеет явно выраженного участка насыщения, что обусловлено генерацией носителей зарядов в \(p\)-\(n\)-переходе и токами утечки по поверхности кристалла. При подаче обратного напряжения превышающего некий пороговый уровень происходит резкое увеличение обратного тока, что может привести к пробою \(p\)-\(n\)-перехода. У германиевых диодов, вследствие большой величины обратного тока, пробой имеет тепловой характер. У кремниевых диодов вероятность теплового пробоя мала, у них преобладает электрический пробой. Пробой кремниевых диодов имеет лавинный характер, поэтому у них, в отличие от германиевых диодов, пробивное напряжение повышается с увеличением температуры. Допустимое обратное напряжение кремниевых диодов (до 1600 В) значительно превосходит аналогичный параметр германиевых диодов.

Обратные токи в значительной степени зависят от температуры перехода. Из рисунка видно, что с ростом температуры обратный ток возрастает. Для приближенной оценки можно считать, что с увеличением температуры на 10 °С обратный ток германиевых диодов возрастает в 2, а кремниевых - в 2,5 раза. Верхний предел диапазона рабочих температур германиевых диодов составляет 75...80 °С, а кремниевых - 125 °С. Существенным недостатком германиевых диодов является их высокая чувствительность к кратковременным импульсным перегрузкам.

Вследствие меньшего обратного тока кремниевого диода его прямой ток, равный току германиевого диода, достигается при большем значении прямого напряжения. Поэтому мощность, рассеиваемая при одинаковых токах, в германиевых диодах меньше, чем в кремниевых. Прямое напряжение при малых прямых токах, когда преобладает падение напряжения на переходе, с ростом температуры уменьшается. При больших токах, когда преобладает падение напряжения на сопротивлении нейтральных областей полупроводника, зависимость прямого напряжения от температуры становится положительной. Точка, в которой отсутствует зависимость прямого напряжения от температуры (т.е. эта зависимость меняет знак), называется точкой инверсии . У большинства диодов малой и средней мощности допустимый прямой ток, как правило, не превышает точки инверсии, а у мощных диодов допустимый ток может быть выше этой точки.

Введение

Полупроводниковый диод полупроводниковый прибор с одним электрическим переходом и двумя выводами (электродами). В отличие от других типов диодов, принцип действия полупроводникового диода основывается на явлении p-n-перехода.

Плоскостные p-n-переходы для полупроводниковых диодов получают методом сплавления, диффузии и эпитаксии.

Условное графическое обозначение (рис. 1) зависит от конструкции диода.

а б в г д е

а – диод; б – стабилитрон; в – симметричный стабилитрон;

г – туннельный диод; д – варикап; е – обращённый диод

Рисунок 1 – Обозначение диодов на принципиальных схемах

Основные характеристики и параметры диодов:

Вольт-амперная характеристика;

Постоянный обратный ток диода;

Постоянное обратное напряжение диода;

Постоянный прямой ток диода;

Диапазон частот диода;

Дифференциальное сопротивление;

- ёмкость;

Пробивное напряжение;

Максимально допустимая мощность;

Максимально допустимый постоянный прямой ток диода.

Типы диодов по назначению

Выпрямительные диоды предназначены для преобразования переменного тока в постоянный.

Импульсные диоды имеют малую длительность переходных процессов, предназначены для применения в импульсных режимах работы.

Детекторные диоды предназначены для детектирования сигнала

Смесительные диоды предназначены для преобразования высокочастотных сигналов в сигнал промежуточной частоты.

Переключательные диоды предназначены для применения в устройствах управления уровнем сверхвысокочастотной мощности.

Параметрические

Ограничительные диоды (диаки, супрессоры) предназначены для защиты радио и бытовой аппаратуры от повышения сетевого напряжения.

Умножительные

Настроечные

Генераторные

Типы диодов по частотному диапазону

Низкочастотные

Высокочастотные

Типы диодов по размеру перехода

Плоскостные

Точечные

Типы диодов по конструкции

Диоды Шоттки

СВЧ-диоды

Стабилитроны

Стабисторы

Варикапы

Светодиоды

Фотодиоды

Лавинный диод

Лавинно-пролётный диод

Диод Ганна

Туннельные диоды

Обращённые диоды

Вольт-амперная характеристика диода

Технические параметры диода в основном определяются его вольтамперной характеристикой (ВАХ), типовой вид которой представлен на рис. 1. Обозначения и определения основных параметров диодов и тиристоров регламентируются стандартами: «Термины, определения и буквенные обозначения» ГОСТ 20332-84. На характеристике можно выделить две типичные ветви: прямую и обратную. Прямая ветвь соответствует проводящему состоянию диода при полярности прямого напряжения. Обратная ветвь показывает закрытое состояние диода при соответствующей полярности обратного напряжения. Прямая ветвь характеризуется малыми значениями прямого напряжения на диоде, а обратная – малыми значениями тока, называемого обратным.

Рисунок 2 – ВАХ диода

При подключении постоянного источника питания «плюсом» к аноду диода (области р – типа), а «минусом» к катоду (области n – типа) диод оказывается в открытом состоянии и в цепи потечёт ток, величина которого зависит от свойств прибора и величины приложенного напряжения. Прямая полярность подключения определяет движение электронов из области n – типа в сторону области р – типа, а «дырки» из области р – типа движутся навстречу электронам. Встречаясь в области р – n перехода носители рекомбинируют и прекращают своё существование. Отрицательный заряд батареи поставляет неограниченное число электронов в n область, а положительный сгенерирует неограниченное число «дырок» в р области. В таком случае сопротивление р – n перехода мало, что способствует протеканию прямого тока.

При обратном подключении источника питания к прибору, электрические заряды на диоде поведут себя по другому: электроны в области n проводимости будут стремиться к положительному заряду, удаляясь от р – n перехода. В свою очередь, дырки в области р проводимости станут перемещаться к отрицательному электроду так же удаляясь от р – n перехода. В итоге граница областей с различной проводимостью расширится и образует зону, обеднённую любыми носителями. Такая зона оказывает току большое сопротивление, однако небольшой обмен носителями здесь всё же происходит, а значит, есть и ток, но его величина во много раз меньше прямого. Этот ток принято называть обратным током диода.

Порядок выполнения работы:

1) запустить программу «Multisim»;

2) используя встроенную библиотеку компонентов и приборов составить схему из приложения А;

3) установить на генераторе синусоидальное напряжение 3В частотой 5 Гц;

4) запустить симуляцию, настроить осциллограф в режиме развёртки В-А так, чтобы было хорошо видно прямую ветвь (рис. 2) ВАХ диода;

5) остановить симуляцию, зарисовать ВАХ диода;

6) установить на генераторе синусоидальное напряжение 150 В частотой 5 Гц;

7) запустить симуляцию, настроить осциллограф в режиме развёртки В-А так, чтобы было хорошо видно обратную ветвь (рис. 2) ВАХ диода;

8) остановить симуляцию, зарисовать ВАХ диода;

10) аналогичным способом измерить ВАХ полупроводникового стабилитрона (приложение Б, настройки генератора – 4 В, 5 Гц);

11) составить схему для диака из приложения В;

12) мультиметр настроить на режим измерения тока, осциллограф на режим обычной временной развёртки;

13) повысив напряжение при помощи переключения обмоток трансформатора, убедиться в перегорании предохранителя;

14) остановить симуляцию, сделать выводы, объяснить что происходит;

15) составить схему выпрямительного моста (приложение Г);

16) установить на генераторе синусоидальное напряжение 9 В частотой 50 Гц;

17) запустить симуляцию, настроить осциллограф;

18) исследовать схему, меняя напряжение и переключая нагрузку, добиться перегорания лампы и предохранителей;

19) остановить симуляцию, сделать выводы, зарисовать осциллограммы;

20) составить схему исследования диода (приложение Д);

21) запустить симуляцию, переключиться на генератор синусоидальных колебаний, настроить осциллографы;

22) сравнить осциллограммы параллельных приборов;

23) переключиться на батарею постоянного тока, изменяя движок переменного резистора R1 построить зависимость напряжения U2 (XMM2) от напряжения U1 (XMM1);

25) закрыть программу;

26) ответить на контрольные вопросы.

Полупроводниковым диодом называют полупроводниковый прибор с одним p-n переходом и двумя выводами.

По функциональному назначению различают:

1) Выпрямительные диоды.

2) Стабилитроны.

3) Импульсные и высокочастотные диоды.

4) Туннельные диоды.

5) Варикапы.

Выпрямительные диоды предназначены для выпрямления переменного тока частотой 50 Гц в постоянный. Используется основное свойство электронно-дырочного перехода - односторонняя проводимость.

Представляет собой один p-n переход в герметичном корпусе с двумя выводами. Вывод положительной области называется анод, вывод отрицательной – катод.

На рисунке 19 изображена структура выпрямительного диода.

Рисунок 19 – Структура выпрямительного диода

Диод в электрических схемах обозначается в соответствии с рисунком 20.

Рисунок 20 - Изображение диода в электрических схемах

График зависимости между током и напряжением называется вольтамперной характеристикой (ВАХ). Выпрямительный диод имеет нелинейную ВАХ.

Характеристика для прямого включения диода вначале имеет значительную нелинейность, т.к. при увеличении прямого напряжения сопротивление запирающего слоя увеличивается постепенно. При определенном напряжении запирающий слой практически исчезает и далее характеристика становится почти линейной.

При обратном включении ток резко увеличивается. Это происходит за счет резкого увеличения потенциального барьера в p-n переходе, резко снижается диффузионный ток, а ток дрейфа увеличивается. Однако при дальнейшем увеличении обратного напряжения рост тока незначителен.

Нар рисунке 21 приведена вольтамперная характеристика выпрямительного диода.

Рисунок 21 – ВАХ выпрямительного диода

Параметры выпрямительных диодов – это величина, характеризующая наиболее существенные свойства прибора.

Различают: статические и предельные параметры.

Статические : Определяются по статическим характеристикам (см. рисунок 22).

Рисунок 22 – Дополнительные построения для определения статических параметров выпрямительного диода

1. Крутизна вольтамперной характеристики:

S = DI / DU , мА / В

где DI – приращение тока;

DU – приращение напряжения.

Крутизна вольтамперной характеристики показывает, на сколько миллиампер изменится ток при увеличении напряжения на 1 вольт.

2. Внутреннее сопротивление диода переменному току.

Ri = DU / DI , Ом

3. Сопротивление диода постоянному току.

R 0 = U / I , Ом

Параметры предельного режима :

Их превышение приводит к выходу прибора из строя. С учетом этих параметров строится электрическая схема.

1. I ПР.ДОП - допустимое значение прямого тока;

2. U ОБР.ДОП - допустимое значение обратного напряжения;

3. Р РАСС - допустимая мощность рассеивания.

Основным недостатком всех полупроводниковых приборов является зависимость их параметров от температуры. С увеличением температуры увеличивается концентрация носителей зарядов и проводимость перехода растет. Сильно увеличивается обратный ток. При увеличении температуры ранее наступает электрический пробой. На рисунке 23 приведено влияние температуры на ВАХ.

Рисунок 23 – Влияние температуры на ВАХ диода

На базе выпрямительного диода можно построить схему простейшего однополупериодного выпрямителя (см. рисунок 24).

Рисунок 24 - Схема простейшего выпрямителя

Схема состоит из трансформатора Т, который служит для преобразования исходного напряжения в напряжение нужной величины; Выпрямительного диода VD, который служит для выпрямления переменного тока, конденсатора С, который служит для сглаживания пульсаций и нагрузки R н.

© 2024 Строительный портал - PvaStudio